p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊C8⋊15C2, C24.1(C2×C4), (C22×D4).4C4, C22.9(C8○D4), (C22×C4).651D4, C24.4C4⋊17C2, C22.5(C23⋊C4), C22⋊C8.124C22, C23.91(C22⋊C4), (C23×C4).200C22, C23.169(C22×C4), (C22×C4).432C23, C22.M4(2)⋊15C2, C2.8(M4(2).8C22), (C2×C4⋊C4).11C4, (C2×C22⋊C8)⋊3C2, C2.9(C2×C23⋊C4), (C2×C4⋊C4).9C22, (C2×C22⋊C4).7C4, (C22×C4).9(C2×C4), (C2×C4).1129(C2×D4), (C2×C4).70(C22⋊C4), C2.6((C22×C8)⋊C2), (C2×C22⋊C4).86C22, C22.150(C2×C22⋊C4), (C2×C22.D4).1C2, SmallGroup(128,200)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊C8⋊C2
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, ab=ba, ac=ca, dad-1=abc, eae=ad4, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, de=ed >
Subgroups: 324 in 140 conjugacy classes, 46 normal (34 characteristic)
C1, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C24, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C22×C8, C2×M4(2), C23×C4, C22×D4, C23⋊C8, C22.M4(2), C2×C22⋊C8, C24.4C4, C2×C22.D4, C23⋊C8⋊C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C8○D4, (C22×C8)⋊C2, C2×C23⋊C4, M4(2).8C22, C23⋊C8⋊C2
(1 5)(2 32)(3 29)(6 28)(7 25)(9 13)(11 18)(12 23)(15 22)(16 19)(20 24)(27 31)
(1 5)(2 28)(3 7)(4 30)(6 32)(8 26)(9 24)(10 14)(11 18)(12 16)(13 20)(15 22)(17 21)(19 23)(25 29)(27 31)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 25)(24 26)
G:=sub<Sym(32)| (1,5)(2,32)(3,29)(6,28)(7,25)(9,13)(11,18)(12,23)(15,22)(16,19)(20,24)(27,31), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23)(25,29)(27,31), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)>;
G:=Group( (1,5)(2,32)(3,29)(6,28)(7,25)(9,13)(11,18)(12,23)(15,22)(16,19)(20,24)(27,31), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23)(25,29)(27,31), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26) );
G=PermutationGroup([[(1,5),(2,32),(3,29),(6,28),(7,25),(9,13),(11,18),(12,23),(15,22),(16,19),(20,24),(27,31)], [(1,5),(2,28),(3,7),(4,30),(6,32),(8,26),(9,24),(10,14),(11,18),(12,16),(13,20),(15,22),(17,21),(19,23),(25,29),(27,31)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,25),(24,26)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 8A | ··· | 8H | 8I | 8J | 8K | 8L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 2 | ··· | 2 | 4 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | C8○D4 | C23⋊C4 | M4(2).8C22 |
kernel | C23⋊C8⋊C2 | C23⋊C8 | C22.M4(2) | C2×C22⋊C8 | C24.4C4 | C2×C22.D4 | C2×C22⋊C4 | C2×C4⋊C4 | C22×D4 | C22×C4 | C22 | C22 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 2 | 2 | 4 | 8 | 2 | 2 |
Matrix representation of C23⋊C8⋊C2 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16] >;
C23⋊C8⋊C2 in GAP, Magma, Sage, TeX
C_2^3\rtimes C_8\rtimes C_2
% in TeX
G:=Group("C2^3:C8:C2");
// GroupNames label
G:=SmallGroup(128,200);
// by ID
G=gap.SmallGroup(128,200);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,723,1123,851,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,e*a*e=a*d^4,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations